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Abstract. We develop the formal density-functional theory of dipolar fluids allowing for bulk
orientational (ferroelectric) order. The long-range character of the dipole–dipole interaction is
treated by separating the direct correlation function of the fluid into short- and long-range parts.
The contribution from the long-range part of the dipole–dipole interaction is shown to determine
the energy of the macroscopic electric field, which depends on the sample shape and on boundary
conditions. The short-range part of the direct correlation function can be used to calculate the
regular contribution to the free energy, which is shape independent. An explanation is proposed
for the failure of all existing density-functional theories to describe the behaviour of strongly
dipolar fluids as observed in computer simulations.

1. Introduction

Despite much theoretical and simulation work extending over the past two decades, our
understanding of the phase behaviour of dipolar fluids is still rudimentary. Recently, the
phase diagrams of both dipolar hard spheres (DHSs) and dipolar soft spheres (DSSs) have
been investigated in much greater detail than before by computer simulation, and it has been
found that both model fluids can form orientationally-ordered phases at liquid densities
[1–4]. Although several theories have been proposed for the true, long-range dipolar or
Stockmayer fluids [5–31] as well as for the related Heisenberg fluid [32–36], considerable
conceptual difficulties remain. Furthermore, the very strong anisotropy of these forces is
reflected in the formation of chains in low-density strongly dipolar fluids, which pre-empts
the usual liquid–vapour phase separation [37–40]. Finally, the need is felt for a study of
the influence of dipolar forces on the structure of stable liquid crystalline phases and phase
transitions [41–43], which would benefit from the more consistent treatment developed for
the simpler systems described above.

The difficulties relating to the long-range character of the dipole–dipole interaction are
well known in the dielectric theory of crystals [44]. The general strategy for overcoming
these difficulties was proposed by Ewald long ago [45]. However, his particular method of
lattice sums cannot be applied directly to dipolar fluids, which possess strong positional
and orientational fluctuations. Instead, the separation between short- and long-range
contributions in dipolar fluids must be formulated in terms of the corresponding correlation
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functions. At the same time, the general physical ideas of Ewald’s theory remain valid in
the case of polar fluids [30]. Here one has to split the interaction between a dipole and
the local electric field in the medium into two parts. The first will be the interaction with
the macroscopic electric field; this is long ranged because the macroscopic electric field
is sensitive to the state of the system far from the given point, including the boundaries.
The second part is the interaction with the fluctuations of the local field, which is short
range. In this paper we perform the corresponding separation in the framework of the
density-functional theory of fluids.

In a separate publication [46], we examined the behaviour of strongly dipolar fluids at
low densities by assuming that the chains can be treated by the standard methods of polymer
theory. This enabled us to derive a simple expression for the free energy of a system of
(polydisperse) dipole chains, allowing for the possibility of orientational order. In this paper
we address the formal problems of constructing a density-functional theory of dipolar fluids.
We start by analysing the shape dependence of the free energy stemming from the long-
range character of the dipole–dipole interaction and discuss how this can be consistently
incorporated into a density-functional theory. Finally we consider the ferroelectric instability
and explore the reasons for disagreement between the predictions of all currently available
theories, and simulation results.

2. Theory

2.1. Shape dependence of the free energy

The long-range character of electrostatic, in this particular case dipolar, forces is a source
of difficulties in the statistical mechanical theory of fluids. This has been discussed in detail
by Groh and Dietrich [25, 27, 31], and can readily be seen in the following simple way. Let
us consider the dipole–dipole interaction as a perturbation

φ(x1,x2) = φref(x1,x2)+ φdd(x1,x2) (1)

wherexi denotes the set of positionri and orientationai coordinates of particlei, φ(x1,x2)

is the total intermolecular potential,φref(x1,x2) is some (usually short ranged) reference
potential, and

φdd(x1,x2) = −µ
2

r3
12

[3(µ̂1 · r̂12)(µ̂2 · r̂12)− µ̂1 · µ̂2] + 4π

3
µ1 · µ2δ(r12) (2)

is the dipole–dipole interaction [47]. In (2),̂µi = µi/µ is a unit vector along the dipole
momentµi of particle i, r̂12 = r12/r12 is a unit vector along the intermolecular axis, and
δ(r12) is a Dirac delta function. Then the free-energy functional of the fluid can be written
as [48]

F [ρ(x)] = Fref[ρ(x)] + 1

2

∫ 1

0
dα
∫

dx1 dx2 g(x1,x2, α)ρ(x1)ρ(x2)φdd(x1,x2) (3)

whereFref[ρ(x)] is the free energy of a fluid of densityρ(x) characterized by the pair
potentialφref(x1,x2) alone, andg(x1,x2, α) is the pairwise distribution function of a fluid
in which molecules interact via

φ(x1,x2, α) = φref(x1,x2)+ α[φ(x1,x2)− φref(x1,x2)]. (4)

At large interparticle separationr12� ξ , whereξ is the correlation length,g(x1,x2, α) ≈ 1
and (3) reduces to

F [ρ(x)] = Fshort[ρ(x)] + 1

2

∫
r12>ξ

dx1 dx2 ρ(x1)ρ(x2)φdd(x1,x2) (5)
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whereFshort containsFref and a part of the integral in (3). The second term on the right-
hand side of (5) vanishes if the fluid has zero macroscopic polarization (whether the same
is produced by an external field, or appears self-consistently, is immaterial), because the
angular averages of the dipole moments vanish [52]. In other words, in a macroscopically
non-polar fluid, the long-range dipolar contribution to the free energy vanishes owing to
orientational averaging.

In a macroscopically polar fluid, however, the angular averages of the dipole moments
are non-zero, and the free energy contains a shape-dependent contribution which is actually
the energy of the macroscopic electrostatic field in the volume of the fluid, as will be shown
in the next subsection. This macroscopic electrostatic field is determined by Maxwell’s
equations and depends not only on the spontaneous polarization (if any) of the fluid, but
also on the boundary conditions and sample shape. It can be argued that a real sample with
non-zero spontaneous polarization will split into domains, which will cause the average
electrostatic field (and the shape-dependent contribution) to vanish. This, however, does not
help avoid difficulties in the statistical theory, since one still requires a consistent procedure
for cancelling all divergences. A similar problem arises in the dielectric theory of crystals,
where the solution (the method of lattice sums) has been known since the work of Ewald in
the 1920s [45]. Yet the same method cannot be directly applied to dipolar fluids, because the
lattice is absent. Høye and Stell have proposed a consistent solution for a particular choice
of the correlation function [11, 30]. More recently, Groh and Dietrich have separated short-
and long-range contributions to the free energy of a dipolar fluid using the zero-density
approximation of density-functional theory [25, 27, 31]. These authors have also considered
the dependence of the free energy on sample shape and applied electric field. The same
general problem has been addressed by Osipov and Sluckin [49] and by Terentjevet al
[50], within the framework of mean-field theory. Here we propose a more general approach
based on the long-range behaviour of the direct correlation function of a dipolar fluid, which
is therefore valid regardless of the approximation one employs for this function.

2.2. Density-functional theory of dipolar fluids

In density-functional theory we can expand the free energy of the ferroelectric (polarized)
phase (F) about that of the isotropic phase (I)

FF = FI + ρkBT

∫
dx f̂ (x) log[4πf̂ (x)]

−1

2
ρ2kBT

∫
dx1 dx2 c2(x1,x2)1f̂ (x1)1f̂ (x2)+ · · · (6)

wheref̂ (x) = ρ(x)/ρ is the orientational distribution function (ODF),1f̂ (x) = f̂ (x) −
4π−1, andc2(x1,x2) is the direct (pair) correlation function (DCF) of the isotropic fluid.
This expansion can be used to calculate the limit of stability of the isotropic phase; this
coincides with the phase transition boundary in the case of a continuous transition.

First, note that the integration overr12 in the third term on the right-hand side of (6)
creates the same problems as in (5). Indeed, the DCF behaves asymptotically as

c2(x1,x2) ∼ −βφ(x1,x2) (7)

whereβ = (kBT )
−1, and in our case the long-range tail of the potential is the dipole–dipole

interaction, (2). The important point is, however, that this is theonly term in the whole
expansion that causes problems. Higher-order terms, containing higher-order correlation
functions, do not diverge. This can be readily seen, for example, by taking the virial
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expansion of the DCF, which can be directly obtained from the Onsager virial expansion
of the free energy. The leading-order term is the Mayerf -function,

c2(x1,x2) = e−βφ(x1,x2) − 1+ · · · (8)

whence at larger12, c2(x1,x2) decays asφ(x1,x2) as stated above. By contrast, the
expansion for thetriplet DCF c3(x1,x2,x3) starts with the triangle graph,

�
�T
Ts ss

whence the corresponding contribution to the free energy contains the integral∫
dr12 dr13 r

−3
12 r
−3
13 |r12− r13|−3 (9)

which does not diverge. Thus we arrive at the general conclusion that the difficulties
associated with the long-range nature of the dipolar interaction manifest themselves only at
the level of thepairwiseDCF, c2(x1,x2), which possesses a long-range tail.

Now the divergence in the third term on the right-hand side of (6) can be eliminated
by a ‘renormalization’ of the pairwise DCF, similar to that perfomed on the pair potential
in the mean-field theory [50]. Let us define the effective short-range pairwise DCF as

c̃2(x1,x2) = c2(x1,x2)+ βφdd(x1,x2). (10)

Substituting (10) into (6), we obtain

FF[f̂ (x)] = F̃ [f̂ (x)] + Uel (11)

where

F̃ [f̂ (x)] = FI + ρkBT

∫
dx f̂ (x) log[4πf̂ (x)]

−1

2
ρ2kBT

∫
dx1 dx2 c̃2(x1,x2)1f̂ (x1)1f̂ (x2)+ · · · (12)

andUel is the energy of the macroscopic electric fieldE(r):

Uel = 1

2
ρ2
∫

dx1 dx2 f̂ (x1)f̂ (x2)φdd(x1,x2)

= 1

2

∫
dr1 dr2Pα(r1)Tαβ(r12)Pβ(r2)

= − 1

2

∫
dr P (r) ·E(r) (13)

whereP (r) = ρ ∫ dω f̂ (x)µ = ρ〈µ〉 is the macroscopic polarization. In the absence of
external fields this is related to the macroscopic electric field by

E(r) = −
∫

dr′ T (r − r′) · P (r′) (14)

whereT (r) is the dipole–dipole tensor [51]. Consequently, the weighted average of the
dipole–dipole interaction (without the hard-core cutoff) has been exactly transformed into
the energy of the electrostatic field in the volumeV of the fluid.

Thus we have split the total free energy of a polarized fluid into two parts. The first one
is the usual free energy of a fluid characterized by the short-ranged pairwise DCFc̃2(x1,x2):
this functional contains no shape dependence and behaves like the free energy of any system
with short-range interactions. The second part is the energy of the electrostatic field. This
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depends only on the macroscopic polarization and the macroscopic electric field. The
relation between these two macroscopic quantities can now be determined solely within the
framework of the macroscopic theory of dielectrics. In the particular case of an ellipsiodal
sample, the polarization and the field are homogeneous and related by the depolarization
factor,D(k), of the ellipsoid [53, 54]

E = −4πD(k)P (15)

whereP is assumed to be parallel to the major axis of the ellipsoid, andk is the aspect
ratio. For a sphere,k = 1 andD = 1

3, whence

Esphere= − 4
3πP

sphere (16)

U
sphere
el /V = 2

3π(P
sphere)2. (17)

Formulae relatingE toP can be found in the literature which take into account the dielectric
constant of the surrounding medium,εout. The most important particular case is that of a
conducting medium, for whichεout = ∞. This leads toE = 0 and to the vanishing of
the electrostatic energy. Therefore, the free energy of a polarized fluid surrounded by a
conducting medium does not contain any shape-dependent contribution. This conclusion
had already been reached by Groh and Dietrich [27], who presented a derivation of the
general relations, (15)–(17).

Recall that the electrostatic energy is positive and therefore forεout = 1 (sample in
vacuum), the lowest-energy state is probably not homogeneous, but rather one where the
system splits into domains, provided the resulting boundary free energy is less than the
macroscopic electrostatic energy. The ideal domain structure would again correspond to
zero average field [26, 31, 55].

Let us now return to the formal definition of the effective short-range DCF, (10).
c̃2(x1,x2) thus defined has a singularity at the origin determined by the dipole–dipole
potential and the limit at larger12 is not given explicitly. For every realistic intermolecular
interaction, one can consider a sufficiently small ‘core’ of diameterσ , inside which the
interaction potential is approximately isotropic [56]. Let us redefine the effective short-
range DCF, taking into account that

c̃2(x1,x2) = lim
R→∞

c̃2(x1,x2, R) (18)

whereR � σ is some (large) cutoff radius, and

c̃2(x1,x2, R) =
{
c2(x1,x2)+ βφdd(x1,x2) if r12 6 R
0 if r12 > R

(19)

is the DCF with the long-range tail cutoff. Indeed, for sufficiently large separationr12 > R

the DCF is given by its asymptotic value, (7) and the two terms in (10) cancel each other.
Thus the effective direct correlation functionc̃2(x1,x2) does not possess a long-range tail
and is expected to give a regular contribution to the free energy. On the other hand, the
integral of the dipole–dipole potential within a sphere of finite diameterD is [57, pp 139–43]∫

r12<D

dr12φdd(x1,x2) = 4π

3
µ1 · µ2. (20)

It is reasonable to assume that the DCF is also isotropic within the spherer12 < σ , where
the interaction potential is isotropic. We can then write the effective short-range DCF
approximately as

c̃2(x1,x2) ≈ 4
3πβδ(r12)µ1 · µ2+ c2(x1,x2, R)

+βH(σ − r12)H(r12− R)φdd(x1,x2) (21)
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whereH(x) is the step function (H(x) = 1 if x < 0 and zero otherwise), and

c2(x1,x2, R) =
{
c2(x1,x2) if r12 6 R
0 if r12 > R.

(22)

Equation (21) is asymptotically exact atR → ∞ and σ → 0+; furthermore, both limits
(r12→ 0 andr12→∞) are exhibited explicitly. Note that whereas the first term takes care
of the discontinuity at the origin, the last term is the dipole–dipole potential cutoff at both
ends of its range, and is therefore absolutely regular. This term does not contribute to the
free energy of thehomogeneousisotropic system because it vanishes on integration over
r12. It will, however, be non-zero in an inhomogeneous system (such as near a surface).

Insertion of (21) into the free-energy expansion, (11) and (12) and use of (13), yields

FF[f̂ (x)] = F0[f̂ (x)] − 1

2

∫
dr
[
P (r) ·E(r)+ 4

3πP
2(r)

]
(23)

where the free energyF0 is again given by (6), but with the full DCFc2(x1,x2) replaced
by the short-rangedc2(x1,x2, R):

F0 = FI + ρkBT

∫
dx f̂ (x) log[4πf̂ (x)]

−1

2
ρ2kBT

∫
dx1 dx2 c2(x1,x2, R)1f̂ (x1)1f̂ (x2)+ · · · . (24)

In (23) the terms in square brackets are the contributions from the long- and zero-range
parts of the dipole–dipole interaction, (13) and (20), respectively. NowF0 depends on
the cutoff radiusR and approaches the true free energy only in the limitR → ∞.
However, for sufficiently largeR � σ this dependence is very weak and can be
neglected for practical purposes. At large intermolecular separation,c(x1,x2) is given
approximately byf (x1,x2), the Mayer function (cf (8)). Nowf (x1,x2) ≈ −βφdd(x1,x2)

if |βφdd(x1,x2)| � 1, whenceR must satisfy the strong inequality(R/σ)3� λ.
In the case of an ellipsoidal sample, the polarization of the sample in a homogeneous

electric field is also homogeneous and if the polarization is along the major axis, (23) can
be rewritten in a particularly simple form (using a generalization of (15))

FF[f̂ (x)] = F0[f̂ (x)] + 2πV
[
D(k, εout)− 1

3

]
P 2 (25)

whereD(k, εout) is the depolarization factor of an ellipsoid of aspect ratiok embedded
in a medium of dielectric constantεout (an explicit expression forD(k, εout) can be found
in, for example, [58]). In general, the equilibrium polarization and electric field will be
inhomogeneous (for example, the spontanously polarized ellipsoid in zero external field
splits into domains). We do not discuss these effects here, but concentrate instead on the
derivation of the free-energy functionalF [P (r)]. The spatial distribution of the polarization
in a sample of a particular shape can then be found by minimizing this functional with
appropriate boundary conditions. We are interested in some special cases.

(1) A spherical sample in a conducting medium,εout = ∞. HereE(r) = 0 and
D(1,∞) = 0, whence

FF[f̂ (x)] = F0[f̂ (x)] − 2
3πVP

2. (26)

(2) A spherical sample in vacuum,εout = 1. NowD(1, 1) = 1
3 and the second term on

the right-hand side of (25) vanishes

FF[f̂ (x)] = F0[f̂ (x)]. (27)
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(3) A cylindrical sample in vacuum with polarization parallel to the axis. In this case
D(∞, 1) = 0 and the free energy is given by (26).

(4) A thin layer in vacuum with polarization normal to the layer. HereD(0, 1) = 1 and

FF[f̂ (x)] = F0[f̂ (x)] + 4
3πVP

2. (28)

In conclusion, we have separated the long- and short-range contributions to the free energy
of the polarized phase of a dipolar fluid in the most general case, simply by assuming the
validity of the functional expansion, (6), and without resorting to any approximations for
the DCF. The method described enables us, in principle, to apply the density-functional
approach to any problem in the statistical physics of polar fluids.

The polarization-dependent term in the previous expressions for the total free energy,
can be positive or negative depending on the sample shape and boundary conditions. The
electrostatic energy (the first term in the square brackets in (25)) is always positive, but
there is also a negative contribution coming from the molecular hard core. For a spherical
sample in vacuum the two contributions cancel each other, whereas for a spherical sample
in a conducting medium the total contribution is negative and thus in this case ferroelectric
ordering is favoured. On the other hand, for a thin layer in vacuum this same contribution
is positive and ferroelectricity is depressed. As mentioned in the introduction, ferroelectric
ordering has been observed in computer simulations of a fluid of dipolar spheres (for a
spherical sample). As far as we know, this is one of very few instances of a phase transition
being so sensitive to sample shape and to the properties of the surrounding medium [59].
We shall discuss the ferroelectric phase transition in more detail in the next section.

2.3. Continuous ferroelectric phase transition in a weakly dipolar fluid

Let us assume that the transition to a homogeneous, uniaxial ferroelectric state, is continuous
in some range of temperatures and densities. The ODF can then be expanded about its value
in the isotropic phase,

f̂ (a · p) = (4π)−1[1+ 3(a · p)+ · · ·] (29)

wherep = ∫ dω f̂ (x)a = 〈µ̂〉. Substitution of (29) into the expression for the free energy
of a spherical ferroelectric sample in a conducting medium, (26), yields

FF = FI + ρV kBT

(
3

2
− 9

2
ρC1− 2π

3
ρ
µ2

kBT

)
p2+ higher-order terms inp (30)

where

C1 =
∫

dr12
da1

4π

da2

4π
c2(x1,x2, R)(a1 · a2) (31)

is the contribution from the second term in the short-range DCF, (21), and we have used the
fact that the macroscopic polarization is the dipole moment per unit volume, i.e.P = ρµp.
The transition point is the limit of stability of the isotropic phase with respect to ferroelectric
fluctuations. This is given by the vanishing of the coefficient ofp2,

3ρC1+ 4π

9
ρinst

µ2

kBT
= 1. (32)

Let us compare the transition temperature/density thus obtained with that of Groh and
Dietrich [27]. First, note that the present density-functional theory is more general than
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theirs: indeed, their free-energy functional is recovered by retaining just the first two terms
in our free-energy expansion and using the approximations

c2(x1,x2) = e−βφ(x1,x2) − 1 (33)

FI = Fhs− kBT

2
ρ2
∫

dx1 dx2[e−βφ(x1,x2) − 1] (34)

whereFhs is the free energy of the reference hard-sphere fluid. We shall see, however,
that on a qualitative level the results of Groh and Dietrich for the continuous transition can
be reproduced by treating the dipole–dipole potential as a perturbation (since they consider
only relatively weak dipoles). In this spirit we further approximatec2(x1,x2) by

c2(x1,x2) ≈ e−βφiso(r12) − 1− βφdd(x1,x2) e−βφiso(r12) (35)

where φiso(r12) is some isotropic interaction (soft spheres, Lennard-Jones, etc). In this
approximation, the quantityC1 vanishes (cf (31)) and the ferroelectric instability occurs at

ρ∗inst =
9

4πλ
(36)

where ρ∗ = ρσ 3 and λ = µ2/kBT σ
3. Let us now estimate the transition density for

Groh and Dietrich’s choice of parameters. Their reduced temperature and dipole moment
are T ∗ = kBT/ε and (d∗)2 = µ2/εσ 3 = λT ∗, respectively, whereε is the depth of the
Lennard-Jones potential well. In the region of continuous ferroelectric transitions,T ∗ ∼ 3.5
for d∗ = 2, whenceλ ∼ 1.1. This yields a ferroelectric instability atρ∗inst ∼ 0.7, not too far
from Groh and Dietrich’sρ∗inst ∼ 0.6. Equation (36) also predictsρ∗inst ∝ T ∗, which agrees
with their quasilinear dependence [27, figure 15].

It follows from the foregoing discussion that the strongest dipole considered by Groh and
Dietrich is only of order one in our reduced units. In the present context,λ is the relevant
reduced dipole moment, since it is the ratio of the strength of the dipolar interaction at
contact to the thermal energy,kBT . Entropy dominates forλ < 1, and significant chain
formation cannot be expected. Chains start to appear atλ > 1 (dimers first), and eventually
dominate atλ� 1 [46].

Our simple approach yields results similar to the much more sophisticated theory of
Groh and Dietrich. Furthermore, the instability condition, (36), does not depend on the
particular form of theisotropic interaction potential, and therefore can be applied to both
the Stockmayer and the dipolar soft- or hard-sphere fluids. This is because, in the present
approximation, the transition is determined by the balance between the orientational entropy
contribution,3

2kBT (ρµ
2)−1P 2, and the second, long-range, term− 2

3P
2 in (26), which does

not depend on the isotropic interaction.
The possibilities of the density-functional theory discussed above (of which Groh and

Dietrich’s is a special case) are, however, very limited. This can be readily seen from (36),
which for λ = 12.25 as used by Levesque and Weis [4], yieldsρ∗inst ≈ 0.06, one order
of magnitude smaller than found by simulation. This strong discrepancy indicates that the
present approach must be even qualitatively incorrect at large dipole moments. One might
argue that such poor agreement is a consequence of the perturbative approximation, (35).
This is obviously not valid at largeλ, where higher powers ofλ will dominate the expansion
of exp[−βφdd(x1,x2)]. So a better approximation is required for the DCF in (31), but we
shall show that this actually increases the discrepancy between theory and simulation, rather
than decreasing it. Indeed, let us findC1 in the zero-density approximation of Groh and
Dietrich:

C1 =
∫

dr12
da1

4π

da2

4π
[e−βφiso(r12)−βφdd (x1,x2) − 1](a1 · a2). (37)
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Now consider the case of strong dipoles,λ� 1, and evaluate the integral on the right-hand
side of (37) taking into account that the integrand has a maximum forr12 ∼ σ , r12 ‖ a1 ‖ a2.
For simplicity we takeφiso(r12) to be the HS potential. The asymptotic expression forC1

is then

C1 ≈ πσ 3

18λ3
e2λ (38)

and the condition for ferroelectric instability is now

πρ∗inst

6λ3
e2λ + 4π

9
ρ∗instλ = 1. (39)

For λ = 9 the first term on the left-hand side of (39) dominates and consequently the
ferroelectric transition will take place at a vanishingly small density. Since this is obviously
in contradiction with simulation, we are led to the conclusion that density-functional theory
supplemented with the zero-density approximation for the DCF, is inappropriate for the
study of strongly dipolar fluids. Indeed, Groh and Dietrich’s theory underestimates the
transition densities already atλ ∼ 1 (i.e. d∗ = 2), as noticed by Stevens and Grest [60]. In
fact, the above strategy works well only for small dipole moments,λ < 1, as recognized
also by Groh and Dietrich in their more recent work [27]. This is not surprising, because
λ ∼ 1 actually defines the boundary between ‘weakly’ and ‘strongly’ polar fluids. For
λ � 1 the fluid is ‘simple’, whereas forλ � 1 long chains will form. Atλ = 1 there
is probably no significant chain formation, but there are already strong short-range dipolar
correlations which are not taken into account completely by the existing theories.

From a qualitative, physical point of view, the situation is clear; our simplified treatment
reveals that it is energetically very favourable for two molecules to have their dipoles
parallel. This tendency already wins over entropic effects at very low densities. On the
other hand, there exists another way of lowering the energy without aligning all dipoles.
This is, of course, chain formation. Indeed, the quantityC1 in (37) is determined by the
minimum of the potential, which corresponds to two neighbouring spheres being part of a
chain. As a result, chains form, even at low densities. However, as shown in [46], the
interaction between chains appears to be weak, especially at low densities. Let us consider
in more detail the dipole–dipole interaction between long chains, which can be responsible
for ferroelectric ordering. In the case of strong dipoles the chains are rather stiff and interact
locally like rigid rods of some effective length̀(see, for example, [61] for a discussion of
the interchain interaction in semiflexible polymers). Now we can apply the general theory of
the continuous ferroelectric phase transition already presented, to the system of dipolar rods
of length` and thicknessσ . For simplicity we shall work in the mean-field approximation,
where the short-range correlation function reads

c2(x1,x2, R) = −βH(ξ12− r12)H(r12− R)φdd(x1,x2) (40)

where the step functionH(ξ12− r12) is zero when the two rods penetrate each other, and
where the distance of minimum approach between the centres of two rods,ξ12, is a function
of the relative orientation of the two particles. Now (40) is to be substituted into the general
equation (31). The corresponding integral of the dipole–dipole potential has been calculated
numerically by Terentjev and Petschek [62], who have also given an interpolation formula.
Using this formula, we obtain

C1 = − 4πµ2

27kBT

[(
1− σ

`

)2/3

− 2

3

(σ/`)[1− (σ/`)]
[1− (σ/`)]2+ 6(σ/`)2

]
. (41)
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For sufficiently stiff chains, the length of the rigid segment`� σ . In this limit,

C1 ≈ − 4πµ2

27kBT

(
1− 4

3

σ

`

)
. (42)

Finally, insertion into (32) yields a ferroelectric instability at

ρ∗inst =
27̀

16πλσ
. (43)

Thus the density of the ferroelectric instability grows linearly with the anisotropy of the
rod `/σ , and can be much larger than the corresponding density for the system of dipolar
spheres, cf (36). Assuming that the length` can be of order 5σ–10σ , we can fit (by order of
magnitude) the transition density found in computer simulations. However, we know that the
simulated ferroelectric phase does not contain any chains, unlike the low-density isotropic
phase where very long, locally stiff, chains form which are essentially non-interacting [46],
consistently withρ∗inst→∞ as`/σ →∞ from (43). Furthermore, it is even questionable
whether the concept of chain is meaningful in the context of ferroelectric ordering [63]. We
conclude that the actual strongly-dipolar fluid appears to be more complicated than expected
and cannot be consistently described by the simple approach already presented. In fact a
realistic theory must not only take into account chain formation at low densities, but also
explain why the chains disssociate before the system becomes ferroelectric.

3. Discussion and conclusions

We have developed a density-functional theory of dipolar fluids, by taking into account the
long-range character of the dipole–dipole interaction. In this context we have shown that the
disagreement between theory and simulation as regards the ferroelectric transition, suggests
that the formalism presented here is unsuitable for dealing with strongly directional forces.

Two mechanisms for the ferroelectric transition of DHSs were analysed in detail, namely
ferroelectric ordering of an ordinary fluid and ferroelectric ordering of a fluid of chains.
These were shown to yield results in disagreement with simulations performed in the strongly
dipolar regime. The former mechanism predicts that the ferroelectric instability will occur
at a density one order of magnitude lower than that obtained by simulation. By contrast,
the latter yields a transition density of the right order of magnitude, but assumes that chains
retain their integrity in the ordered phase, which is not borne out by simulations.

In an alternative scenario, proposed by Gingras and Holdsworth [63], the ferroelectric
transition takes place from an intermediate phase characterized by local bond-orientational
order, to the polarized phase characterized by long-range orientational order. It is indeed
plausible that ferroelectric ordering in the dipolar fluid is qualitatively different from the
magnetic-ordering transition in Heisenberg fluids [36, 64–66], in that it may be accompanied
by important short-ranged spatial correlations owing to the strong anisotropy of the dipole–
dipole potential. This anisotropy is responsible for the formation of long chains in the
low-density phase and is likely to play an important role in driving the ferroelectric
transition. Such spatial correlations constitute local-bond orientational order [67], analogous
to that exhibited by hexactic smectic liquid-crystal phases [68] and the corresponding order
parameter can be constructed from the eigenvalues of the rotationally-invariant tensors
describing the orientation of the cage of neighbours [67]

Bαβ = 1

4π2V

∫
(3r̂α12r̂

β

12− δαβ)g2(x1,x2) dx1 dx2 (44)
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whereg2(x1,x2) is the pair distribution function. This order parameter vanishes if the pair
correlation function is completely isotropic, but along a chain it will decay exponentially
on the scale of the persistence length. The principal axis of the uniaxial tensorB will be
along the local orientation of the chain. In the isotropic phase, however, the chains are
randomly oriented and thus the order parameterB vanishes after proper averaging.Bαβ is
non-zero (i.e. there is true long-range order) only if the correlation functiong2(x1,x2) (or,
equivalently,h2(x1,x2)) approaches a constant value at larger12. This value must depend
on the unit vector̂r12 and reflect the anisotropy of the bond-orientational order

h2(x1,x2)→ constant× nαnβ(3r̂α12r̂
β

12− δαβ). (45)

Heren is the unit vector that characterizes the macroscopic asymmetry of the system. It
seems unlikely that bond-orientational order will appear self-consistently: most likely it will
be induced by nematic or ferroelectric ordering. In the latter casen is the unit vector along
the direction of polarization.

We note that the order parameterBαβ has the same symmetry as the nematic order
parameterQαβ . Indeed, the vector̂r12 for consecutive particles within a rigid segment of
a chain is a good definition of the local axis of the chain. ThenBαβ is the nematic order
parameter for chains, and thus local bond-orientational order is equivalent to local nematic
order of the chains. By contrast, the order parameter that describes the broken symmetry in
the ferroelectric phase is the macroscopic polarization,P (r), hence the bond-orientational
order parameters are not the main order parameters of the ferroelectric transition. This
fact notwithstanding, how does bond-orientational order affect this transition? The simplest
Landau–Ginzburg free energy which takes into account the coupling between polarization
and (uniaxial) bond-orientational order is

1F = FF− FI = a(T − Tc)P
2+ bP 4+AB2− CBP 2+ · · · (46)

whereP = |P (r)| (we restrict ourselves to the uniform, uniaxial ferromagnetic case),B is
the largest eigenvalue of the traceless symmetric tensorB, anda, b, A andC are positive
coefficients which can be written in terms of the parameters of the dipole–dipole interaction.
(The minus sign in front of the cross term,−CBP 2, ensures that bond-orientational order—
or, equivalently, nematic order of the chains—is along the direction of polarization.) After
minimization with respect toB, one obtainsB = (C/2A)P 2, and the free energy becomes

1F = a(T − Tc)P
2+

(
b − C

2

4A

)
P 4+ · · · . (47)

Thus bond-orientational order renormalizes the coefficients of the free-energy expansion
in powers ofP (r) and can drive the continuous transition first-order, but it is important
to realize that the instability temperature is unchanged. The actual first-order ferroelectric
transition will nevertheless occur at a higher temperature,TIF > Tc (and therefore at an
even lower density). This is not surprising, given that local bond-orientational order in the
isotropic phase promotes all kinds of uniaxial orientational order and consequently does not
shift the transition density in the desired direction.

In the simulations of Gingraset al [67] chains indeed appear due to a strongly-directional
potential of the type dipole–dipole squared; however, once formed, they do not dissociate
but only grow and arrange themselves in a two-dimensional (2D) pattern owing to emerging
lateral bonds [67, figure 6]. That is, in this case the bond-orientational order does not destroy
chains but rather orders them in a 2D biaxial structure which corresponds to a 2D crystal
with numerous defects. In 3D this would be described by a state with a fourth-order bond
orientational order parameter. Still, as pointed out by Gingras and Holdsworth [63], the
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chain concept may not be useful in describing the build-up of correlations expected to occur
in a dipolar system in the process of ordering ferroelectrically.

Apart from the accuracy of the present description, some questions remain unanswered.
In particular, the nature of the crossover from the low-density regime, characterized by
extensive chaining, to the fluid with local bond-orientational order, is not understood (at
least quantitatively). At present we do not know of any general mechanism of chain
dissociation other than strong monomer–monomer attraction [46, 69]. Despite the fact that
simulations of the ferroelectric phase did not explicitly include the Van der Waals attraction
between monomers, we can argue that such an attraction may be obtained from the weighted
average of the dipole–dipole potential (i.e. from the second term in (34)). However, the
very same attraction induces gas–liquid phase separation, which has not been found in the
simulations of DHS fluids. Hence the relation between chain dissociation and ferroelectric
ordering remains an unsettled issue, to be addressed by a more refined theory or by computer
simulations. Finally, since the ferroelectric phase is a high-density fluid phase, the question
arises of under what conditions the same is stable with respect to the solid [70]. Clearly
much work remains to be done fully to elucidate the phase behaviour of strongly-dipolar
fluids.
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